Zoom out, zoom in, zoom out.

# ggplot2 version par(ask=TRUE) out <- NULL p <- ggplot(data.frame(movieSummary), aes(y=movieSummary$Profit)) + ylab("Profits") + scale_y_continuous(labels=comma) for(i in 2:(ncol(movieSummary)-1)) { p <- p + aes_string(x = names(movieSummary)[i]) + xlab(colnames(movieSummary[i])) + geom_point(shape=1) print(p) out[[i]] <- p # ggsave(filename=paste("Plot of Profit versus",colnames(movieSummary[i]),".pdf",sep=" "), plot=p) } grid.arrange(out[[2]], out[[3]], out[[4]], out[[5]], out[[6]], out[[7]], out[[8]], nrow = 7) dev.off()

Created by Pretty R at inside-R.org

Too tired to explain after so much debugging. But the key is at the line here

p + aes_string(x = names(mydata)[i])

Use aes_string instead of aes, so that when you look at summary(ggplot_obj), the mapping for x-values that are changing will be the actual string and not a variable i.

Below is a kmeans implementation, plotted with ggplot2. To change the y label values (because they are large, they are automatically formatted to scientific type i.e. exponential powers of n). To ‘unpower’ the values, you need to load the scales library and add the necessary in ggplot’s scale_y_continuous.

# K-Means Cluster Analysis m <- mplayer # matrix type df <- player # dataframe type fit <- kmeans(m, 3) aggregate(m,by=list(fit$cluster),FUN=mean) # get cluster means fit$size fit$withinss # Cluster graphing df$cluster <- factor(fit$cluster) centers <- as.data.frame(fit$centers) library(ggplot2) library(scales) # needed for formatting y-axis labels to non-scientific type ggplot(data=df, aes(x=Experience, y=Career_salary, color=cluster )) + geom_point() + scale_y_continuous(labels = comma) + geom_point(data=centers, aes(x=Experience, y=Career_salary, color='Center')) + geom_point(data=centers, aes(x=Experience, y=Career_salary, color='Center'), size=52, alpha=.3, show_guide=FALSE)

Do something like this fromĀ http://www.r-bloggers.com/how-to-plot-three-categorical-variables-and-one-continuous-variable-using-ggplot2/

Learn from http://val-systems.blogspot.sg/2012/06/overplotting-solution-for-black-and.html

Transform this

to this

mathbabe

Exploring and venting about quantitative issues

The Stone and the Shell

Using large digital libraries to advance literary history

Hi. I'm Hilary Mason.

Zoom out, zoom in, zoom out.

Introduction to Data Science, Columbia University

Blog to document and reflect on Columbia Data Science Class

statMethods blog

A Quick-R Companion

the Tarzan

[R] + applied economics.

4D Pie Charts

Scientific computing, data viz and general geekery, with examples in R and MATLAB.